R

NASA Technical Memorandhm 101516

PRELIMINARY ESTIMATES OF GALACTIC COSMIC RAY SHIELDING REQUIREMENTS
FOR MANNED INTERPLANETARY MISSIONS

(NASA-TM-101516) PRELIMINARY ESTINMATES OF N839-15070

GALACTIC CCSMIC EAY SHEIELDING BECUIREMENTIS

FCE MANNED INTERFIANETARY MISSICNS (NASA)

22 p CsCL 03B gnclas
63/93 0179685

LAWRENCE W. TOWNSEND, JOHN W. WILSON, AND JOHN E. NEALY

OCTOBER 1988

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225



ABSTRACT

Estimates of radiation risk to the blood forming organs from galactic cosmic
rays are presented for manned interplanetary missions. The calculations use the
Naval Research Laboratory cosmic ray spectrum model as input into the Langley
Research Center galactic cosmic ray transport code. This transport code, which
transports both heavy ions and nucleons, can be used with any number of layers of
target material, consisting of up to five different arbitrary constituents per layer.
Calculated galactic cosmic ray doses and dose equivalents behind various
thicknesses of aluminum and water shielding are presented for solar maximum and
solar minimum periods. Estimates of risk to the blood forming organs are made
using 5-cm depth dose/dose equivalent values for water. These results indicate that
atleast 5 g/cm? (5 cm) of water or 6.5 g/cm? (2.4 cm) of aluminum shielding is
required to reduce the annual exposure below the currently recommended limit of
50 rem. Because of the large uncertainties in fragmentation parameters, and the
input cosmic ray spectrum, these exposure estimates may be uncertain by as much as
70 percent. Therefore, more detailed analyses with improved inputs could indicate

the need for additional shielding. ~



INTRODUCTION

As the twentieth century draws to a close, there is an ever-increasing interest
in manned interplanetary travel. In particular, current attention is focussed upon
manned missions to the Earth's moon and to the planet Mars and its satellites. A
major concern to interplanetary mission planners is exposure of the crew to highly
penetrating and damaging space radiations. The two major sources of these
radiations are solar particle events (SPE) and galactic cosmic rays (GCR). Estimates of
radiation exposures to the blood forming orgéns (BFO) from energetic solar proton
events (flares) are presented in reference 1. In addition, preliminary calculations of
GCR exposures in aluminum were presented previously (ref. 2). These latter
estimates were of limited usefulness, however, because of the restriction to non-
hydrogenous targets imposed by the missing nucleon-hydrogen cross section data
bases in the transport code. To rectify that limitation in the present code, the HZE
(high-energy heavy ion) component of the previous GCR transport code (ref. 3) has
been coupled to a modified version of the Langley Research Center nucleon
transport code BRYNTRN (ref. 4). Thxs coupling of the two deterministic transport
codes produces a single complete code for use in GCR shielding and dosimetry
studies. This code, however, is considered to be interim in that it does not treat
meson éontributions, neglects target fragments produced by propagating protons and
heavy ions, uses accurate but somewhat simplified input cross sections, and has not
been optimized for computational efficiency. The neglect of target fragment

contributions from the incident GCR protons has been corrected for in the



calculations by computing the contribution using BRYNTRN (ref. 4) and adding the
results to the proton dose/dose equivalent predictions presented herein.
Nevertheless, the present interim computer code is useful for initial exposure and
shield requirement estimates.

In this report, preliminary estimates of integral fluxes (particles/ cm? /year),
doses (rad/year), and dose equivalents (rem/year) in tissue, behind various
thicknesses of aluminum and water shielding, are presented according to particle
composition (protons, neutrons, alphas, and HZE) and as LET (linear energy
transfer) spectra. The calculations, which include both solar maximum and solar
minimum periods, use as the input spectrum the analytical model of the GCR

environment promulgated by the Naval Research Laboratory (ref. 5).

CALCULATIONAL METHODS

The incident galactic cosmic ray spectrum (ref. 5) for free space is propagated
through the target material using the accurate analytical/numerical solutions to the
transport equation described in references 3 and 4. These highly accurate solution
methods have been verified (to within 2-percent accuracy) by comparison with an
exact, analytical benchmark solution to the ion transport equation (refs. 6 and 7).

These transport calculations include:

a. ICRP-26 quality factors (ref. 8).

b. Dose contributions from propagating neutrons, protons, alpha particles,
and heavy ions (HZE particles).

¢. Dose contributions resulting from target nuclear fragments produced by
incident neutrons and protons.
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d. Dose contributions due to nuclear recoil in tissue.

Major shortcomings of the calculations are:

a. Except for tissue targets, mass number 2 and 3 fragment contributions are
neglected.

b. Target fragmentation contributions from HZE particles are neglected
(although they are included for nucleons).

c. Itis presently assumed that all secondary particles are produced with a
velocity equal to that of the incident particle. For neutrons produced in
HZE particle fragmentations, this is conservative.

d. A quality factor of 20 is assigned to all multiply charged target fragments.
To improve this approximation, one needs to calculate target fragment

spectra correctly.

e. Meson contributions to the propagating radiation fields are neglected.
f. Nucleus-nucleus cross sections are not fully energy-dependent (nucleon-
nucleus cross sections are fully energy-dependent).
RESULTS

Figure 1 displays dose equivalent (in units of rem/year) as a function of water
shield thickness (in units of areal density, g/cm?, or thickness, cm). Curves are
displayed for solar minimum and solar maximum periods. The numerical values
used in the figure are listed in Table I. Also listed in this table are values for the
absorbed dose (in rad/year) as a function of water shield thickness. The actual
compositions of the calculated radiation fields are displayed in Tables II-IV where
values for dose equivalent, dose, and particle flux are listed by particle type

(neutrons, protons, alphas, and HZE) as a function of water and shield thickness.
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The target fragment dose/dose equivalent contributions for protons, computed
using BRYNTRN (ref. 4), are displayed separately in these tables.

Because many damage mechanisms in biological systems, electronic
components, and structural materials may be LET-dependent, Tables V-ViI display
values of particle flux, dose, and dose equivalent as a function of LET (in MeV-
cm?/g) and water shield thickness. Values are listed for both solar minimum and
solar maximum periods. All dose and flux quantities are integral values.
Comparable tables for aluminum shields, listed in reference 1, will not be repeated
herein. The calculated LET spectra in Tables V-VII do not include target fragment
contributions.

From Table I (or Figure 1), estimates of the thicknesses of water shielding
required to protect astronauts from GCR particles can be obtained. At present there
are no recommended exposure limits for exploratory class missions. Therefore, we
will utilize the currently proposed annual limits for Space Station Freedom (ref. 9).
These are 300 rem to the eye (0.01-cm depth), 200 rem to the skin (0.3-cm depth), and
50 rem to the blood forming organs-BFO (5-cm depth). Clearly, from Table I, none of
these limits are exceeded during periods of solar maximum activity, as the
unshielded (0-cm depth) dose equivalent is estimated to be less than 50 rem.
Similarly, during solar minimum periods, the estimated unshielded dose
equivalent of 120.5 rem does not exceed either the skin or the eye exposure limits.

The dose equivalent at 5-cm depth, which yields an estimate of the unshielded BFO



6
exposure, is 64-rem, which exceeds the 50-rem limit by 28 percent. To reduce this
estimated exposure below 50 rem requires-approximately 5 g/cm? (5 cm) of water
shielding.

For comparison purposes, calculations of BFO exposurés behind various
thicknesses (up to 10 g/cm?) of aluminum shielding were made. The results are
presented in Tables VIII and IX. For aluminum, 6.5 g/cm? (2.4 cm) of shielding
thickness is required to reduce the BFO dose equivalent below the 50-rem annual
limit. Comparing Tables I and VII], it is apparent that the added shielding
effectiveness of water is not significant for thin shields (< 5 g/cm?) but can be
significant for thicker shields. These results demonstrate that a major source of BFO
shielding is the body self-shielding of the astronauts themselves.

The preliminary nature of these calculations cannot be overemphasized.
From Figure 1 it is apparent that the dose equivalent is a slowly decreasing function
of shield thickness. This is a result of secondary particle production processes
whereby the heavier GCR nuclei are broken up into nucleons and lighter nuclear
fragments by nuclear and Coulombic interactions with the shield material. This
slow decrease in dose equivalent with increasing shield thickness means that
relatively small uncertainties in predicted doses may yield large uncertainties in
estimated shield thicknesses. For example, if the actual dose equivalent during solar
minimun.l is 20-percent larger than the predictions in Table I, the water shield
thickness required to reduce the estimated BFO dose equivalent below the 50-rem

limit increases from 5 g/cm? to 16 g/cm? — which means a tripling of the required
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shield mass. To estimate the actual uncertainties in the results presented herein, we
note that previous studies of the uncertainties introduced into transport
calculations (ref. 10) through the use of energy-independent nucleus-nucleus
absorption cross sections and fragmentation parameters suggest that the predicted
HZE doses may be underestimated by as much as 10-20 percent, depending upon the
accuracy of the fragmentation model used. In addition, the overall uncertainty in
the input GCR spectrum may be as large as 20-50 percent (ref. 5). Therefore, the total
uncertaint‘y in our dose/dose equivalent estimates may be as large as 30-70 percent.
If the predicted doses/dose equivalents are increased by 50 percent to account for
these uncertainties, then the water shield thickness required to limit BFO exposures
to 50 rem/year increases from 5 g/cm? to 25 g/cm?. Clearly, the uncertainties in the
actual GCR environmental model and in the input nuclear fragmentation models
need to be resolved through additional theoretical and experimental research.
Finally, we note that radiation exposure is cumulative and therefore requires
consideration of contributions from all sources including on-board nuclear power
sources, solar particle events, and galactic cosmic rays. Exposure to on-board sources
will reduce the allowed exposures from solar flares and cosmic rays and thereby
increase required shield thicknesses necessary to stay below the approved exposure

limits.

CONCLUDING REMARKS
Preliminary estimates of radiation exposures resulting from galactic cosmic

rays are presented for interplanetary missions. Particle flux, dose, and dose
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equivalent values are presented, for both solar maximum and minimum periods, as
a function of water and aluminum shield thickness, and as a function of lineas,,
energy transfer. The main contributions to the radiation doses arise from high-
energy heavy ion (HZE) particles. As the incident radiations attenuate in the shield |
material, there is a significant buildup of secondary particles resulting from nuclear
fragmentation and Coulomb dissociation processes. A substantial fraction of these
secondaries are energetic protons and neutrons. During solar minimum periods, at
least 5 g/cm? of water shielding, or 6.5 g/cm? of aluminum shielding will be needed
to keep the estimated risk to the blood forming organs below the current annual
Space Station Freedom limit of 50 rem/year. Significant uncertainties in the input
cosmic ray spectra, and in the input nuclear fragmentation cross sections, could
significantly alter these estimates, however, by requiring substantial quantities of

additional shielding to compensate for their effects.
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Figure 1. - Dose equivalent in water, as a function of water shield thickness,
resulting from galactic cosmic rays.
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